如图所示,设M是三角形ABC的重心,过M的直线分别交边AB、AC于P、Q两点,且AP/PB=mAQ/QC=n则1/m+1
1个回答

过B作BE∥MA交MP的延长线于E,过C作CF∥MA交MQ的延长线于F,延长AM交BC于D.

∵M是△ABC的重心,∴AM=2MD、BD=CD.

∵BE∥MA,∴△APM∽△BPE,∴AM/BE=AP/PB=m,∴1/m=BE/AM.······①

∵CF∥MA,∴△AQM∽△CQF,∴AM/CF=AQ/QC=n,∴1/n=CF/AM.······②

①+②,得:1/m+1/n=(BE+CF)/AM.······③

∵BE∥MA、CF∥MA,∴BE∥DM∥CF,又BD=CD,∴BE+CF=2MD=AM.······④

由③、④,得:1/m+1/n=1.