证明若f(x)极限存在,则极限值唯一
收藏:
0
点赞数:
0
评论数:
0
1个回答

假设f(x)存在两个极限,分别为a和b,不妨设a<b.则对ε0=(b-a)/2>0,存在正数δ1,当0<|x-x0|<δ1时,有|f(x)-a|<ε0=(b-a)/2,从而f(x)<(a+b)/2;同理存在δ2,当0<|x-x0|<δ2时,有|f(x)-b|<ε0=(b-a)/2,从而f(x)>(a+b)/2.取δ=min{δ1,δ2},则当0<|x-x0|<δ时,f(x)<(a+b)/2和f(x)>(a+b)/2同时成立,这是不可能的.所以若f(x)极限存在,则极限值唯一.

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识