如图,在矩形ABCD中,AB=3,BC=4,现将点A、C重合,使纸片折叠压平,折痕为EF,那么重叠部分
1个回答

解题思路:重叠部分为△AEF,底为AF,高为AB,根据折叠的性质可知∠AEF=∠CEF,AE=EC,由平行线的性质可知∠CEF=∠AFE,故有∠AEF=∠AFE,可知AE=AF=EC,设AE=AF=EC=x,则BE=4-x,在Rt△ABE中,运用勾股定理列方程求解.

由折叠的性质可知∠AEF=∠CEF,AE=EC,

由平行线的性质可知∠CEF=∠AFE,

∴∠AEF=∠AFE,

∴AE=AF=EC,

设AE=AF=EC=x,则BE=4-x,

在Rt△ABE中,由勾股定理得AB2+BE2=AE2

即32+(4-x)2=x2

解得x=[25/8],

∴S△AEF=[1/2]×AF×AB=[1/2]×[25/8]×3=[75/16].

故本题答案为:[75/16].

点评:

本题考点: 翻折变换(折叠问题).

考点点评: 本题考查了翻折变换的性质.关键是由折叠得到相等的线段,相等的角,利用勾股定理列方程求解.