解题思路:(Ⅰ)由an+1=2an+3得an+1+3=2(an+3),由此能求出an.
(Ⅱ)因为(bn+1,bn)在直线y=x-1上,所以bn=bn+1-1即bn+1-bn=1,由此能求出bn.
(Ⅲ)由cn=an+3=2n+1-3+3=2n+1,知bncn=n•2n+1,所以Sn=1×22+2×23+3×24+…+n•2n+1,再由错位相减法能求出Sn.
(Ⅰ)由an+1=2an+3得an+1+3=2(an+3)
所以{an+3}是首项为a1+3=4,公比为2的等比数列.
所以an+3=4×2n-1=2n+1,故an=2n+1-3
(Ⅱ)因为(bn+1,bn)在直线y=x-1上,
所以bn=bn+1-1即bn+1-bn=1又b1=1
故数列{bn}是首项为1,公差为1的等差数列,
所以bn=n
(Ⅲ)cn=an+3=2n+1-3+3=2n+1故bncn=n•2n+1
所以Sn=1×22+2×23+3×24+…+n•2n+1
故2Sn=1×23+2×24+…+(n-1)•2n+1+n•2n+2
相减得−Sn=22+23+24+…+2n+1−n•2n+2=
4(2n−1)
2−1−n•2n+2=(1−n)2n+2−4
所以Sn=(n-1)•2n+2+4
点评:
本题考点: 等比数列的通项公式;等差数列的通项公式;等比数列的前n项和;数列的求和.
考点点评: 本题考查数列的通项公式的计算和前n项和公式的求法,综合性强,难度大,容易出错.解题时要认真审题,注意错位相减法的灵活运用.