能否在8行8列方格表的每个方格中分别填上1、2或3,使每行没列以及每条对角线上的各个数的和互不相同?
1个回答

答案,不能

分析与8行8列及两条对角线,共有18条“线”,每条“线”上都填有8个数字,要使各条“线”上的数字和均不相同,那么各条“线”上的数字和的取值情况应不少于18种.

下面我们来分析一下各条“线”上取不同和的情况有多少种.

如果某一条“线”上的8个数字都填上最小的数1,则可得到数字和的最小值8;如果某一条“线”上的8个空格中都填上最大的数3,那么可得到数字和的最大值24.

由于数字及数字和均为整数,所以从8到24共有17种不同的值.我们将数字和的17种不同的值看作17个抽屉,而将18条“线”看作18个元素.

根据抽屉原理一,将18个元素放入17个抽屉中,一定有一只抽屉中放入了至少两个元素.

即18条“线”上的数字和至少有两个相同,所以不可能使18条“线”上的各数字和互不相同.

抽屉原则,又叫狄利克雷原则,原则一:把多于n个的元素,按任一确定的方式分成n个集合,那么一定至少有一个集合中,含有至少两个元素.原则二:把多于m×n个元素放入n个抽屉中,那么,一定有一个抽屉里有m+1个或者m+1个以上的元素.抽屉原则是证明符合某种条件的对象存在性问题有力工具.应用抽屉原则解决问题的关键是如何构造抽屉.