已知数列{an}为a0,a1,a2,a3,…,an(n∈N),bn=ni=0ai表示a0+a1+a2+a3+…+an,i
1个回答

解题思路:(1)由已知条件得

n

i=0

(

b

i

C

i

n

)=(

2

1

−1)

C

0

n

+(

2

2

−1)

C

1

n

+(

2

3

−1)

C

2

n

+…+(

2

n+1

−1)

C

n

n

,由此利用分组求和法能求出结果.

(2)由已知条件得

n

i=0

(

b

i

C

i

n

)=1•2•

C

1

n

+2•3•

C

2

n

+3•4•

C

3

n

+…+n(n+1)

C

n

n

,由此利用导数性质能求出结果.

(1)∵an=2n,bn=

n

i=0ai,

∴bn=20+21+22+…+2n=2n+1−1,

n

i=0(bi

Cin)=(21−1)

C0n+(22−1)

C1n+(23−1)

C2n+…+(2n+1−1)

Cnn

=21•

C0n−1•

C0n+22•

C1n−1•

C1n+23•

C2n−1•

C2n+…+2n+1•

Cnn−1•

Cnn

=2(

C0n+21•

C1n+22•

C2n+…+2n•

Cnn)−(

C0n+

C1n+

C2n+…+

Cnn)

=2(1+2)n-2n=2•3n-2n. …(4分)

(2)∵an=2n,bn=

n

i=0ai,

∴bn=0+2+4+…+2n=n(n+1),

n

i=0(bi

Cin)=1•2•

C1n+2•3•

C2n+3•4•

C3n+…+n(n+1)

Cnn,

(1+x)n=

C0n+

C1nx+

C2nx2+

C3nx3+…+

Cnnxn,

两边同乘以x,则有x(1+x)n=

C0nx+

C1nx2+

C2nx3+

C3nx4+…+

Cnnxn+1,

两边求导,左边=(1+x)n+nx(1+x)n-1

右边=

C0n+2

C1nx+3

C2nx2+4

C3nx3+…+(n+1)

Cnnxn,

即(1+x)n+nx(1+x)n−1=

C0n+2

C1nx+3

C2nx2+4

C3nx3+…+(n+1)

Cnnxn(*),

对(*)式两边再求导,

得2n(1+x)n−1+n(n−1)x(1+x)n−2=2•1•

C1n+3•2•

C2nx+4•3•

C3nx2+…+(n+1)n

Cnnxn−1

取x=1,则有(n2+3n)•2n−2=1•2•

C1n+2•3•

C2n+3•4•

C3n+…+n(n+1)

Cnn

n

i=1(bi

Cin)=(n2+3n)•2n−2.…(10分)

点评:

本题考点: 数列的求和.

考点点评: 本题考查数列的前n项和的求法,综合性强,难度大,计算繁琐,解题时要认真审题,注意导数性质的灵活运用.