函数-方程-系数已知:关于x的方程kx^2-2(k+1)x+k-1=0有实数根(1)求 k的取值范围(2)设方程的两个实
2个回答

(1)

kx^2-2(k+1)x+k-1=0有实数根,则

①k=0时,-2x-1=0 得 x=-1/2满足

①k≠0时,

Δ=[-2(k+1)]^2-4k(k-1)≥0

4k^2+8k+4-4k^2+4k≥0

12k≥-4

k≥-1/3

综上,所求k的取值范围为k≥-1/3

(2)

由(1)得,方程有两个实数根x1,x2(x1<x2),则k>-1/3且k≠0.

x1+x2=2(k+1)/k x1x2=(k-1)/k

(x2-x1)²=(x1+x2)²-4x1x2

=[2(k+1)/k]²-4(k-1)/k

=(4k²+8k+4)/k²-(4k²-4k)/k²

=(12k+4)/k²

x2-x1=√[(12k+4)/k²]=√(12k+4)/k

∴y=kx2-kx1=k(x2-x1)=k*√(12k+4)/k=√(12k+4)=2√(3k+1) (k>-1/3且k≠0)

即这个函数的解析为y=2√(3k+1) (k>-1/3且k≠0)