1.已知函数y=1+3sin(2x+派/4)
1个回答

1.已知函数y=1+3sin(2x+派/4)

(1)求函数的周期?写出函数的单调递增区间?

(2) 求函数最大值所对应的x的集合?

(1)解析:∵f(x)=1+3sin(2x+π/4),∴T=2π/2=π

∵正弦函数的单调增区间为[2kπ-π/2,2kπ+π/2]

∴2kπ-π/2≤2x+π/4≤2kπ+π/2

==>2kπ-3π/4≤2x≤2kπ+π/4

==>kπ-3π/8≤x≤kπ+π/8

∴函数f(x)的单调递增区间kπ-3π/8≤x≤kπ+π/8

(2)由(1)可知,函数最大值所对应的x的集合为{x|x=kπ+π/8,k∈Z}

2.已知α属于(0,派/2)β属于(派/2,派)且sin(α+β)=33/65,cosβ=5/13,求sin=?

解析:∵α属于(0,派/2)β属于(派/2,派)且sin(α+β)=33/65,cosβ=5/13

sinβ=12/13

Sin(α+β)=sinαcosβ+cosαsinβ=33/65

sinα*5/13+cosα*12/13=33/65?sinα*5+cosα*12=33/5

又(sinα)^2+(cosα)^2=1

cosα=√(1-(sinα)^2)

√(1-(sinα)^2)=(33-25sinα)/60

60^2-60^2(sinα)^2=33^2+25^2(sinα)^2-2*33*25 sinα

(60^2+25^2) (sinα)^2-2*33*25 sinα+33^2-60^2=0

4225 (sinα)^2-1650 sinα-2511=0

sinα≈0.99053

3.已知函数f(x)=sin(派-x)cosx.求f(x)的最小正周期?求f(x)在区间〔-派/6,派/2〕上的最大值和最小值?

解析:∵函数f(x)=sin(派-x)cosx=-(cosx)^2=-1/2cos2x-1/2

∴f(x)的最小正周期为π

∵π/2-(-π/6)=2π/3