关于统计概率的问题,预测协方差符号
1个回答

n=6

p=0.2,0.6,0.8为p的数值

q(p)=0.1,0.7,0.2为p的概率

当p固定时,对二项分布X:

E(X | p) = np

E(X^2 | p) = Var(X^2 | p) + (E(X | p))^2 = np(1-p) + (np)^2 = np(1-p+np)

所以:

E(X) = E(E(X | p))

= Σ_{p} (np)*q(p)

= n Σ_{p} p*q(p)

= 6(0.2*0.1 + 0.6*0.7 + 0.8*0.2)

= 3.6

E(X^2) = E(E(X^2 | p))

= Σ_{p} (np(1-p+np))*q(p)

= n Σ_{p} p(1-p+np)*q(p)

= 6(0.2*(1-0.2+6*0.2)*0.1 + 0.6*(1-0.6+6*0.6)*0.7 + 0.8*(1-0.8+6*0.8)*0.2)

= 15.12

所以:

Var(X) = E(X^2) - (E(X))^2 = 15.12 - 3.6^2 = 2.16

协方差:

因为p增大时,E(X)也增大;p减小时,E(X)也减小,所以协方差是正数.

如果你不放心,也可以算出协方差:

Cov(X,p) = E(Xp) - E(X) E(p)

其中:E(Xp) = E(Xp | p) = Σ_{p} (E(X | p)*p)*q(p) = Σ_{p} (np^2)*q(p)

所以:

Cov(X,p) = Σ_{p} (np^2)*q(p) - (Σ_{p} (np)*q(p)) * (Σ_{p} p*q(p))

= n (Σ_{p} (p^2)*q(p) - (Σ_{p} p*q(p)) * (Σ_{p} p*q(p)))

= n Var(p)

> 0

或者直接算出协方差的值:

E(Xp) = 6(0.2^2*0.1 + 0.6^2*0.7 + 0.8^2*0.2) = 2.304

E(p) = 0.2*0.1 + 0.6*0.7 + 0.8*0.2 = 0.6

所以:Cov(X,p) = 2.304 - 3.6*0.6 = 0.144 > 0