1.因为X(n+1)=X(n)-X(n-1)
所以X(n+1)
=(X(n-1)-X(n-2))-X(n-1)
=-X(n-2)
=-(X(n-3)-X(n-4))
=-((X(n-4)-X(n-5))-X(n-4))
=X(n-5)
所以X(n)=X(n-6)
即X(n)=X(n-6k) 因为2010=6*335
所以X(2010)=X(0)=a
2.A(n+1)-A(n)=1/(n+1+1)+1/(n+1+2)+...+1/(n+1+n)+1/(n+1+n+1)-
1/(n+1)+1/(n+2)+...+1/(n+n)
=1/(n+1+n)+1/(n+1+n+1)-1/(n+1)
=1/(n+n+1)-1/(n+1+n+1)
= 1/((2n+1)(2n+2))
>0
3.我还没看出来 ==再看看