(y^2-6x)y'+2y=0 求通解.
1个回答

∵(y^2-6x)y'+2y=0 ==>(y^2-6x)y'=-2y

==>(y^2-6x)dy/dx=-2y

==>dx/dy=(y^2-6x)/(-2y)

==>dx/dy=3x/y-y/2

==>dx/dy-3x/y=-y/2

∴先解齐次方程dx/dy-3x/y=0的通解

∵dx/dy-3x/y=0 ==>dx/dy=3x/y

==>dx/x=3dy/y

==>ln|x|=3ln|y|+ln|C| (C是积分常数)

==>x=Cy³

∴齐次方程dx/dy-3x/y=0的通解是x=Cy³ (C是积分常数)

于是,应用“常数变易法”,设原微分方程的通解为x=uy³ (u是关于y的函数)

∵dx/dy=y³du/dy+3uy²

∴把它代入dx/dy-3x/y=-y/2

得y³du/dy+3uy²-3uy³/y=-y/2

==>y³du/dy+3uy²-3uy²=-y/2

==>y³du/dy=-y/2

==>y²du/dy=-1/2

==>du=-dy/(2y²)

==>u=1/(2y)+C (C是积分常数)

把u=1/(2y)+C代入x=uy³,得x=[1/(2y)+C]y³=y²/2+Cy³

故原微分方程的通解是x=y²/2+Cy³ (C是积分常数).