已知F(1,0),P是平面上一动点.P到直线L:X=-1上的射影为点N,且满足(向量PN+0.5·向量NF)·向量NF=
2个回答

(1)设曲线C上任意一点P(x,y),又F(1,0),N(-1,y),从而向量PN

=(-1-x,0),向量NF=(2,-y)

PN+1/2NF=(-x,-1/2y),(PN+1/2NF)•NF=0⇒-2x+1/2y2=0

化简得y^2=4x,即为所求的P点的轨迹C的对应的方程.

(2)由题意可知直线DE的斜率存在且不为零,可设DE的方程为x=my+a

并设D(x1,y1),E(x2,y2).联立:y2=4x x=my+a

代入整理得y^2-4my-4a=0从而有y1+y2=4m①,y1y2=-4a②

又k1k2=1⇒(y1-2)/(x1-1)乘以(y2-2)/(x2-1)=1 又y1^2=4x1,y2^2=4x2,

∴k1k2=1⇒(y1-2)/(y1^2/4-1)乘以(y2-2)/(y2^2/4-1)=1

展开即得y1y2+2(y1+y2)-12=0

将①②代入得-4a+2×4m-12=0,即a=2m-3,得,DE:x=my+2m-3,

即(x+3)=m(y+2),故直线DE经过(-3,-2)这个定点.

满意请点击屏幕下方“选为满意回答”,