∵x²+x+1-(x²-1)
=x+2>0
x²+x+1-(2x+1)
=x²-x
=x(x-1)>0
∴x²+x+1是最长边
设x²+x+1所对的角为a
∴(x²+x+1)²=(x²-1)²+(2x+1)²-2(x²-1)(2x+1)cosa
∴(x²+x+1)²-(x²-1)²-(2x+1)²=-2(x²-1)(2x+1)cosa
(2x²+x)(x+2)-(2x+1)²=-2(x²-1)(2x+1)cosa
2x³+5x²+2x-4x²-4x-1=-2(x²-1)(2x+1)cosa
2x³+x²-2x-1=-2(x²-1)(2x+1)cosa
cosa=-1/2
∴a=120°