cosα=-7/(5√2),(π/2〈α〈π),sinα=1/(5√2),
tanβ=-1/3,(π/2〈β〈π),
secβ=-√[1+tan^2(β)]=-√10/3,cosβ=-3/√10,sinβ=√[1-cos^2(β)]=1/√10,
sin2β=2sinβcosβ=2*(1/√10)*(-3/√10)=-3/5,
cos2β=2cos^2(β)-1=4/5,
sin(α+2β )=sinαcos2β+cosαsin2β,
=1/(5√2)*(4/5)+[-7/(5√2)]*(-3/5)
=√2/2,
cos(α+2β )=cosαcos2β -sinαsin2β
=-7/(5√2)*4/5-1/(5√2)*(-3/5)
=-√2/2.
π/2〈α〈π,
π