巴蜀数学13级9题,详见补充,
2个回答

从条件可以判断出(a1+an)/(b1+bn)= (4n+6)/(n+7)

从这可以设(a1+an) = K (4n+6)

(b1+bn) = K(n+7)

等差数列有这样一个公式am + at = ar + a f = 2 ap,当然前提条件是m + t = r + f = p + p;

所以a3 + a6 = a1 + a8 ,带入上面得(a3 + a6) = K (38);

a9 + a14 = a1+ a22,带入上面得 K (94);

b3+b11= b7+b7 = 2 (b7)单独求出b7;

又因为b3+b11 = b1+ b13,带入上面得(b3 + b11) = K (20);

从而解得 b7 = [K (20)]/2 = K (10);

b6 + b13 = b1 + b18,带入上面得b6 + b3 = K (25);

上面的K都只是一个参数.

求解真个分式得[K (38 ) + K (94)] / [K (20) + K(10) + k (25)] = (38 + 94) / (20 +10 +25) = 132/55

所以正确答案是132/55

明白了吗?关键还是公式的灵活运用.