几何表示
具有方向的线段叫做有向线段,我们以A为起点、B为终点的有向线段记作,则向量可以相应地记作.但是,区别于有向线段,在一般的数学研究中,向量是可以平移的.[2]
坐标表示
在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得:
向量的坐标表示
a=xi+yj,我们把(x,y)叫做向量a的(直角)坐标,记作:a=(x,y).
其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示.在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示.
根据定义,任取平面上两点A(x1,y1),B(x2,y2),则向量AB=(x2-x1,y2-y1),即一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.[2]
书写方法
印刷体:只用小写字母表示时,采用加粗黑体;用首尾点大写字母表示时,需要在字母上加箭头,如;
手写体:均需在字母上加箭头表示,如、.
4运算性质
向量同数量一样,也可以进行运算.向量可以参与多种运算过程,包括线性运算(加法、减法和数乘)、数量积、向量积与混合积等.
下面介绍运算性质时,将统一作如下规定:任取平面上两点A(x1,y1),B(x2,y2),C(x3,y3).
加法
向量加法的三角形法则
已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC.
用坐标表示时,显然有:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC.这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差
三角形法则:AB+BC=AC,这种计算法则叫做向量加法的三角形法则,简记为:首尾相连、连接首尾、指向终点.
四边形法则:已知两个从同一点A出发的两个向量AC、AB,以AC、AB为邻边作平行四边形ACDB,则以A为起点的对角线AD就是向量
向量加法的四边形法则
AC、AB的和,这种计算法则叫做向量加法的平行四边形法则,简记为:共起点 对角连.
对于零向量和任意向量a,有:0+a=a+0=a.
向量的加法满足所有的加法运算定律,如:交换律、结合律.
(本段文字资料整理自[2],图片为原始资料)
减法
AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连终点、方向指向被减向量.
-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b).[2]
数乘
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa.当λ>0时,λa的方向和a的方向相同,当λ