高等数学 反推齐次方程
1个回答

(a)

y=t*u

y'=u+tu'

y''=u'+u'+tu''=tu''+2u'

代入方程

t^2(tu''+2u')-t(t+2)(tu'+u)+(t+2)tu=0

t^3u''+(2t^2-t^2(t+2))u'=0

u''+[(-1-t)/t]u'=0

令v=u'

v'+[(-1-t)/t]v=0

integrating factor z=exp(int P(t)dt)=exp(-t-lnt)=e^(-t)/t

apply z

(vz)'=0

vz=C

v=C/z=Cte^t

u=int v dt =C(t-1)e^t

y=Ct(t-1)e^t

Combine y1 and y2, we have the general solution

C1*t+C2*t(t-1)e^t

(b)

y=u*e^t

y'=u'e^t+ue^t

y''=u''e^t+2u'e^t+ue^t

t(u''e^t+2u'e^t+ue^t)-(t+2)(u'e^t+ue^t)+2ue^t=0

te^t u''+(t-2)e^t u'=0

v=u'

v'+[(t-2)/t] v=0

z=exp(int (t-2)/t dt)=exp(t-2lnt)=e^t/t^2

(vz)'=0

vz=C

v=C/z=Ct^2e^(-t)

u=int v dt=Ce^(-t)(-t^2-2t-2)

y=C1e^t+C2e^(-t)(-t^2-2t-2)

(c)

y=u t^(-1/2)sint

y'=u't^(-1/2)sint+u[(-1/2)t^(-3/2)sint+t^(-1/2)cost]

y''=u''t^(-1/2)sint+2u'[(-1/2)t^(-3/2)sint+t^(-1/2)cost]+u[(3/4)t^(-5/2)sint-t^(-3/2)cost-t^(-1/2)sint]

带入

u''t^(3/2)sint+u'[2t^(3/2)cost]=0

v=u'

v'+2cot t v=0

dv/dt=-2cot t v

dv/v=-2cot t dt

ln v=-2ln(sint)

v=(sint)^(-2)=csc^2 t

u=int v dt =- cot t

y=-t^(-1/2) cost

所以

y=C1t^(-1/2) cost+C2t^(-1/2) sint