解题思路:延长CE、BA交于点F.根据等角的余角相等,得∠ABD=∠ACF;再根据ASA可以证明△ABD≌△ACF,则BD=CF;根据ASA可以证明△BCE≌△BFE,则CE=EF,从而证明结论.
证明:延长CE、BA交于点F.∵CE⊥BD于E,∠BAC=90°,∴∠ABD=∠ACF.在△ABD与△ACF中,∠ABD=∠ACFAB=AC∠BAD=∠CAF=90°,∴△ABD≌△ACF(ASA),∴BD=CF.∵BD平分∠ABC,∴∠CBE=∠FBE.在△BCE与△BFE中...
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 此题考查了全等三角形的性质和判定;作出辅助线,证明三角形全等是正确解决本题的关键.