根据Taylor Polynomials
f(x)=f(2)+f'(2)(x-2)+f"(2)(x-2)^2/2+Pn=0+0+(3/2)(x-2)^2+Pn
=(3/2)(x-2)^2+Pn
g(x)=g(2)+g'(2)(x-2)+g"(2)(x-2)^2/2+Qn=0+22(x-2)+(5/2)(x-2)^2+Qn
=22(x-2)+(5/2)(x-2)^2+Qn
h(x)=h(2)+h'(2)(x-2)+h"(2)(x-2)^2/2+Pn=0+0+(7/2)(x-2)^2+Rn
=(7/2)(x-2)^2+Rn
其中,Pn,Qn和Rn分别是f(x),g(x)和h(x)的三阶余项
lim(x→2)f(x)/g(x)=lim(x→2)((3/2)(x-2)^2+Pn)/(22(x-2)+(5/2)(x-2)^2+Qn)
lim(x→2)f(x)/h(x)=lim(x→2)((3/2)(x-2)^2+Pn)/((7/2)(x-2)^2+Rn)
根据L'Hôpital's Rule
lim(x→2)f(x)/g(x)=0/22=0
lim(x→2)f(x)/h(x)=(3/2)/(7/2)=3/7