已知函数f(x)=(x 2 -3x+3)•e x .
1个回答

(1)∵f(x)=(x 2-3x+3)•e x

∴f′(x)=(2x-3)e x+(x 2-3x+3)e x=(x 2-x)e x

令f′(x)>0,即(x 2-x)e x>0,解得x<0或x>1,

令f′(x)<0,即(x 2-x)e x<0,解得0<x<1,

∴函数f(x)的单调递增区间为(-∞,0),(1,+∞),单调递减区间为(0,1);

(2)∵t>-2,

①当t∈(-2,0]时,

∵f(x)在(-∞,0]单调递增,∴f(t)>f(-2),

②当t∈(0,+∞)时,∵f(x)在[0,1]单调递减,在[1,+∞)单调递增,

∴f(t)所能取得的最小值为f(1)与f(-2)的最小值,

∵f(1)=e,f(-2)=13e -2,f(1)>f(-2),

∴当t∈(0,+∞)时,f(t)>f(-2)

综上可知:当t>-2时,f(t)>f(-2);

(3)

f′(x)

e x =

2

3 (t-1) 2即x 2-x=

2

3 (t-1) 2

考虑函数g(x)=x 2-x-

2

3 (t-1 ) 2 ,

g(-2)=6-

2

3 (t-1 ) 2 =-

2

3 (t+2)(t-4)>0,g(1)=-

2

3 (t-1) 2<0,

g(t)=t 2-t-

2

3 (t-1 ) 2 =

1

3 (t 2+t-2)=

1

3 (t+2)(t-1)>0,

∴g(x)在区间[-2,1)、(1,t)分别存在零点,

又由二次函数的单调性可知:g(x)最多存在两个零点,

∴关于x的方程:

f′(x)

e x =

2

3 (t-1) 2在区间[-2,t]上总有两个不同的解.