(1)∵f(x)=(x 2-3x+3)•e x,
∴f′(x)=(2x-3)e x+(x 2-3x+3)e x=(x 2-x)e x,
令f′(x)>0,即(x 2-x)e x>0,解得x<0或x>1,
令f′(x)<0,即(x 2-x)e x<0,解得0<x<1,
∴函数f(x)的单调递增区间为(-∞,0),(1,+∞),单调递减区间为(0,1);
(2)∵t>-2,
①当t∈(-2,0]时,
∵f(x)在(-∞,0]单调递增,∴f(t)>f(-2),
②当t∈(0,+∞)时,∵f(x)在[0,1]单调递减,在[1,+∞)单调递增,
∴f(t)所能取得的最小值为f(1)与f(-2)的最小值,
∵f(1)=e,f(-2)=13e -2,f(1)>f(-2),
∴当t∈(0,+∞)时,f(t)>f(-2)
综上可知:当t>-2时,f(t)>f(-2);
(3)
f′(x)
e x =
2
3 (t-1) 2即x 2-x=
2
3 (t-1) 2,
考虑函数g(x)=x 2-x-
2
3 (t-1 ) 2 ,
g(-2)=6-
2
3 (t-1 ) 2 =-
2
3 (t+2)(t-4)>0,g(1)=-
2
3 (t-1) 2<0,
g(t)=t 2-t-
2
3 (t-1 ) 2 =
1
3 (t 2+t-2)=
1
3 (t+2)(t-1)>0,
∴g(x)在区间[-2,1)、(1,t)分别存在零点,
又由二次函数的单调性可知:g(x)最多存在两个零点,
∴关于x的方程:
f′(x)
e x =
2
3 (t-1) 2在区间[-2,t]上总有两个不同的解.