从1到2004中任选K个数,使所选K个数中,定能有构成三角形三边的三个数(三边长互不相等)求K的最小值.
收藏:
0
点赞数:
0
评论数:
0
1个回答

构成三角形的条件,两短边和大于长边

现在列出临界的不能构成三角形的数列以求得不满足构成三角形最大K值(这个临界数列也就是两短边和等于第三边,只要存在一个数破坏这个临界数列,那么就可以构成三角形了)

1 2 3 5 8...N(k-2)+N(k-1)

Nk=N(k-2)+N(k-1)

这个k是下标(由于无法输入下标只要这么表示,特此申明)

其实这是一个去掉了首项的Fibonacci数列,网上有关于Fibonacci数列第n项的计算公式,由于baidu不支持引用图片,所以只好你自己去找了.

根据Fibonacci数列公式,第18项的值大于2004.

在我们这里也就是第17项,当k取17的时候,那么定能存在三个数构成三角形!

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识