已知数列{an}与{bn}满足关系:a1=2,a(n+1)=(an^2+1)/2an,bn=(an+1)/(an-1).
1个回答

(1) 由bn=(an+1)/(an-1) (1)

得 b(n+1)=[a(n+1)+1]/[a(n+1)-1] (2)

再将a(n+1)=(an^2+1)/2an 代入(2)

化简得 b(n+1)=(an+1)^2/(an-1)^2

故 b(n+1)=bn^2 再对两边取对数 得lgb(n+1)=2lgbn

故数列{lg bn}是首项为lgb1=lg3 公比为2 的等比数列

(2) 由(1)的结论得 bn=3^[2^(n-1)]

(an-1)/[a(n+1)-1]=(an-1)/[(an^2+1)/2an-1]=2+2/(an-1)

而bn=(an+1)/(an-1) =1+2/(an-1)

故:(an-1)/[a(n+1)-1]=bn+1=3^[2^(n-1)]+1

(3) 由bn=(an+1)/(an-1) 得an=(bn+1)/(bn-1)=1+2/(bn-1)

则Sn=a1+a2+……+an=n+Tn(其中Tn是2/(bn-1)的n项和)

故要证Sn