sinx ≥ - (√2)/2
-√2/2=sin(-π/4)=sin(-3π/4)
=sin(2kπ-π/4)=sin(2kπ-3π/4)
即sinx≥sin(2kπ-π/4)
sinx≥sin(2kπ-3π/4)
sinx在(2kπ-π,2kπ-π/2)是减函数
在(2kπ-π/2,2kπ)是增函数
所以
x∈(2kπ-π,2kπ-π/2)时,2kπ-3π/4≤x≤2kπ-π/2
x∈(2kπ-π/2,2kπ)时,2kπ-π/2≤x≤2kπ-π/4
综上
2kπ-3π/4≤x≤2kπ-π/4