(1)作FG⊥AB于G、FM⊥BC于M、FN⊥AC于N.
∵平分线
∴FG=FM=FN
∵∠ACB=90° ∠B=60°
∴∠BAC=30°
∵∠FEG=∠EAC+∠ECA=30°+1/2×90°=75°
∠FDM=∠B+∠BAD=1/2×30°+60°=75°
∴∠FEG=∠FDM
∵∠FGE=∠FMD=90° ∠FEG=∠FDM FG=FM
∴⊿FGE≌⊿FMD
∴FE=FD
(2)成立.
∠FEG=∠BAC+∠ECA=∠BAC+1/2∠BCA=1/2(∠BAC+∠BCA)+1/2∠BAC=1/2(180°-∠B)+1/2∠BAC=1/2(180°-60°)+1/2∠BAC=60°+1/2∠BAC=∠B+∠BAD=∠FDM
∠FGE=∠FDM=90°
FG=FM
∴⊿FGE≌⊿FMD
∴FE=FD