证明(1):
∵△=[-(2k+1)]²-4×1×4(k-1/2)
=4k²+4k+1-16k+8
=4k²-12k+9
=(2k-3)²
∴无论k取何实数值,△≥0,方程总有实数根
解(2):根据韦达定理
b+c=2k+1
根据题意:b+c﹥a
2k+1﹥4
2k﹥3
k﹥3/2,△﹥0,方程有两个不相等的实数根,有一根一定为4
把x=4代入原方程,得:
4²-(2k+1)×4+4(k-1/2)=0
16-8k-4+4k-2=0
-8k+4k=2+4-16
-4k=-10
k=5/2
2k+1=2×5/2+1=6
a+b+c=4+6=10,三角形ABC的周长为10