一道高数题:反常积分∫(上限正无穷,下限1)1/(x^2*(1+x))dx的值为() A.无穷 B.0 C.ln2 D.
1个回答

问题:原积分 = ∫{x = 1 →∞} 1 / [ x²(1+x)] dx =

方法1:

1 / [ x²(1+x)]

= [1 - x² +x²] / [ x²(1+x)]

= [1 - x² ] / [ x²(1+x)] + x² / [ x²(1+x)]

= (1 - x) / x² + 1 / (1+x)

= [1 / x² - 1 / x + 1 / (1+x) ]

所以:原积分 = ∫{x = 1 →∞} 1 / [ x²(1+x)] dx

= ∫{x = 1 →∞} [1 / x² - 1 / x + 1 / (1+x) ] dx

= - 1 / x + Ln[(1+x) / x] ----------- x = 1 →∞

= 1 - Ln2 --------------- 选 D

方法2:设 x = 1 / t {x = 1 →∞} →→→→→ {t = 1 →0}

原积分 = ∫{x = 1 →∞} 1 / [ x²(1+x)] dx

= ∫{t = 1 →0} - t / (1+t) dt

= ∫{t = 0 →1} t / (1+t) dt ----------- t / (1+t) = 1 - 1 / (1 + t)

= t - Ln(1+t) t = 0 →1

= 1 - Ln2