急啊:tan(a+π/4)+tan(a+3π/4)=2tan2a
1个回答

证明:

∵tan(a+π/4)=(tana+tanπ/4)/(1-tana*tanπ/4)=(tana+1)/(1-tana)

tan(a+3π/4)=(tana+tan3π/4)/(1-tana*tan3π/4)=(tana-1)/(1+tana)

∴tan(a+π/4)+tan(a+3π/4)

=(tana+1)/(1-tana)+(tana-1)/(1+tana)

=[(tana+1)²-(tana+1)²]/(1-tan²a)

=4tana/(1-tan²a)

∵tan2a=2tana/(1-tan²a)

∴tan(a+π/4)+tan(a+3π/4)=2tan2a