设函数的定义域为(0,+∞),且对任意的正实数x,y,有f(xy)=f(x)+f(y)恒成立,已知f(1/2)=1,且当
3个回答

(1) ∵ 正实数x,y,有f(xy)=f(x)+f(y)恒成立

又 ∵ f(1/2)=1

∴ f(1/2)=f(1*1/2)=f(1)+f(1/2)=1

∴ f(1)=0

(2)令0<x1<x2<+∞

由题已知f(xy)=f(x)+f(y)恒成立,以及(1)中f(1/2)=1,f(1)=0,可得,f(x)=log(1/2)(x) (以1/2为底x的对数)

∵ a=1/2,0<1/2<1,则f(x1)-f(x2)=log(1/2)(x1/x2)>0

∴ 函数f(x)在(0,+∞)上是减函数.

(3)∵ f(x)+f(x-3/4)<2

即 log(1/2)(x)+log(1/2)(x-3/4)=log(1/2)[x*(x-3/4)]=log(1/2)(x²-3x/4)<2

∴ x²-3x/4>(1/2)²

(x-3/8)²>1/4+9/64=25/64

∴ x-3/8<-5/8 或 x-3/8>5/8

即 x<-1/4 或 x>1