在△ABC中,BC=根号5,AC=3,4cos2A-cos2C=3,1.求AB的值
1个回答

a=√5,b=3

由4cos2A-cos2C=3可得:

4-8sin^2A-1+2sin^C=3

2sinA=sinC

所以由正弦定理:

absinC=bcsinA求出c

a2sinA=csinA

c=2a=2√5

由余弦定理可以求出角度:

cosB=(a^2+c^2-b^2)/2ac=(5+20-9)/20=4/5

B=arccos(4/5)

cosA=2√5/5 A=arccos(2√5/5)

cosC=-√5/5 C=π-arccos(√5/5)

2、

sin^2A=1-cos^2A=1-20/25=1/5

sinA=√5/5

sin(2A-π/4)=sin2Acosπ/4-cos2Asinπ/4

=( √2/2)sin2A-(√2/2)cos2A

=√2sinAcosA-√2/2+√2sin^2A

=√2*2√5/5*√5/5-√2/2+√2/5

=2√2/5-√2/2+√2/5=3√2/5-√2/2