解题思路:通过全等三角形的判定定理ASA证得△CDO≌△EAO,则该全等三角形的对应边相等:CD=AE,所以AB+CD=AE+AB=BE.
证明:如图,∵AD⊥AB,AD⊥DC,
∴∠D=∠OAE=90°,
又∵O是AD中点,
∴OD=OA.
∴在△CDO与△EAO中,
∠D=∠EAO
OD=OA
∠DOC=∠AOE,
∴△CDO≌△EAO(ASA),
∴CD=AE,
∴AB+CD=AE+AB=BE,即AB+CD=EB.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边、公共角和对顶角,必要时添加适当辅助线构造三角形.