解题思路:由f(x)=ex-2x+2a,x∈R,知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.列表讨论能求出f(x)的单调区间及极值.
∵f(x)=ex-2x+2a,x∈R,
∴f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.
于是当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,ln2) ln2 (ln2,+∞)
f′(x) - 0 +
f(x) 单调递减 2(1-ln2+a) 单调递增故f(x)的单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞),
f(x)在x=ln2处取得极小值,极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a).
点评:
本题考点: 利用导数研究函数的极值.
考点点评: 本题考查函数的单调区间及极值的求法,具体涉及到导数的性质、函数增减区间的判断、极值的计算,属中档题.