过A(1,0)的直线与⊙C,X^2+Y^2-6X-8Y+9=0交于p,q,与直线L,x+2y+4=0交于N,PQ的中点为
1个回答

设过点A的直线方程为:y=kx-k,与圆交与P、Q两点,将y=kx-k,代入圆的方程得:

x^2+k^2(x^2-2x+1)-6x-8k(x-1)+9=0 化简得:

(1+k^2)x^2-(2k^2+8k+6)x+(k^2+8k+9)=0

设P(x1,y1),Q(x2,y2)则有:

x1+x2=(2k^2+8k+6)/(1+k^2) x1x2=(k^2+8k+9)/(1+k^2)

P,Q在直线y=kx-k上,则有:y1=kx1-k y2=kx2-k y1+y2=k(x1+x2)-2k=k(2k^2+8k+6)/(1+k^2)-2k

=(8k^2+4k)/(1+k^2)

则M的横坐标为:xm=(x1+x2)/2=(k^2+4k+3)/(1+k^2)

M的纵坐标为:ym=(y1+y2)/2=(4k^2+2k)/(1+k^2)

直线y=kx-k与直线L的交点为:

y=kx-k

x+2y+4=0 联立解得 xn=(2k-4)/(2k+1) yn=-5k/(2k+1)

|AM|=√[(xm-1)^2+(ym-0)^2]=√{[(k^2+4k+3)/(1+k^2)-1]^2+[(4k^2+2k)/(1+k^2)]^2}

=√[(4k+2)^2/(1+k^2)]

|AN|=√[(xn-1)^2+(yn-0)^2]=√{[(2k-4)/(2k+1)-1]^2+[(-5k)/(2k+1)]^2}=5√[(1+k^2)/(2k+1)^2]

所以:

|AM|*|AN|=√[(4k+2)^2/(1+k^2)]*5√[(1+k^2)/(2k+1)^2]=10