已知a,b为锐角3(sina)*2+2(sinb)*2=13sin2a-2sin2b=0求证:a+2b=π/2注:*2
1个回答

3Sin[a]^2+2Sin[b]^2==1(1)

3Sin[2a]-2Sin[2b]==0(2)

a,b为锐角

(1)->3Cos[2a]+2Cos[2b]==3(3)

(2)->9(1-Cos[2a]^2)==4(1-Cos[2b]^2)(4)

由(3)(4),Cos[2a]=7/9(5),Cos[2b]=1/3(6)

(5)->Sin[a]=sqrt((1-Cos[2a])/2)(7),Cos[a]=sqrt((1+Cos[2a])/2)(8)

(6)->Sin[2b]=2sqrt(2)/3(9)

由(8),(6),(7),(9)

Cos[a+2b]=Cos[a]Cos[2b]-Sin[a]Sin[2b]=0

a,b为锐角,所以a+2b=π/2

注释:sqrt(XX)是根号XX的意思,还有要悬赏一点哦