X=斜边长
Xcosa+Xsina+X=2P
X[1+√2sin(π/4+a)]=2P
X=2P/[1+√2sin(π/4+a)]>=2P/(1+√2)
a=π/4,即等腰直角三角形时,X最小
sinx-siny=sinz
cosx-cosy=cosz
1=2-2sinxcosy-2cosxcosy
1/2=cos(y-x)
x,y,z∈(0,π/2),
y-x=π/3
3sinb=sin2xcosb+cos2xsinb
3=2sinxcosx/tanb+1+2cos^2x
1=tanx/[tanb(1+tan^2x)]+1/(1+tan^2x)
tanb(1+tan^2x)=tanb+tanx
tanx(tanbtanx-1)=0
tanx=0,或tanbtanx=1
tanx+tanb=2tanx(1-tanxtanb)
B