因 4xsinA -3cosA = 2x^2
√(16x^2 9)sin(A-arcain(3/√(16x^2 9))) = 2x^2
即 sin(A-arcain(3/√(16x^2 9))) = 2x^2/√(16x^2 9)
因对于角A属于R,方程2X^2-4XsinA 3cosA=0有解
所以有
-1≤ 2x^2/√(16x^2 9)≤ 1
即 4x^4 -16x^2 -9 ≤ 0
解得 x^2≤ 9/2
即 -3√2/2≤ x≤3√2/2
所以满足题意的x的取值范围 是 -3√2/2≤ x ≤3√2/2 .