求该不定积分 ∫ dx / (1+9 x^2)
1个回答

∫ dx/(1 + 9x²)

= (1/3)∫ d(3x)/[1 + (3x)²]

= (1/3)arctan(3x) + C,公式∫ 1/(a² + x²) dx = (1/a)arctan(x/a) + C

或详细:

令3x = tanθ,3dx = sec²θdθ

∫ dx/(1 + 9x²)

= ∫ (sec²θ)/3 * 1/(1 + tan²θ) dθ

= (1/3)∫ sec²θ/sec²θ dθ

= θ/3 + C

= (1/3)arctan(3x) + C