已知xyz=1.x2+y2+z2=16.求1/xy+2z+1/yz+2x+1/xz+2y的值
1个回答

如果是 xyz=1,x+y+z=2,x^2+y^2+z^2=16,

求1/xy+2z+1/yz+2x+1/xz+2y

应该是

原式 = ( 1/xy + 2z ) + ( 1/yz + 2x ) + (1/xz + 2y )

通分 = (z+2xyzz)/xyz + (x+2xxyz)/xyz + (y+2xyyz)/xyz

化简 = ( x+y+z+ 2xyz(x+y+z) )/xyz =6

如果是xyz=1,x+y+z=2,x^2+y^2+z^2=16,

求1/(xy+2z) +1/(yz+2x) +1/(zx+2y)

应该是

由题意得

①(x+y+z)^2 - (x^2+y^2+z^2)/2 = xy + xz + yz = -6

②(xy + xz + yz)^2 - 2xyz(x+y+z) = x^2y^2 + x^2z^2 + y^2z^2 = 32

原式 = 【(yz+2x)(xz+2y) + (xy+2z)(xz+2y) + (xy+2z)(yz+2x)】 /【 (xy+2z)(xz+2y)(yz+2x)】

通分 = (xyz^2 + 2x^2y + 2y^2z + 4xy + x^2yz + 2xy^2 + 2xz^2 + 4yz + xy^2z + 2x^2y + 2yz^2 + 4xy) / (x^2y^2z^2 + 2x^3yz + 2xy^3z + 2xyz^3 + 4x^2y^2 + 4x^2z^2 + 4y^2z^2 + 8xyz)

合并 = (xyz(x+y+z) + 2(xy+xz+yz)(x+y+z) + 4(xy+xz+yz) - 6xyz)/ 【(xyz)^2 + 2xyz(x^2+y^2+z^2) + 4(x^2y^2 + x^2z^2 + y^2z^2) + 8xyz】

带入①②= -52/169

=-4/13