∫ arctanx / x² dx
= -∫ arctanx d(1/x)
= -(1/x)arctanx + ∫ (1/x)d(arctanx)
= -(1/x)arctanx + ∫ 1/[x(1+x²)] dx
= -(1/x)arctanx + ∫ (1/x)dx - ∫ x/(1+x²) dx
= -(1/x)arctanx + ln|x| - (1/2)ln(1+x²) + C
Note:
1/[x(1+x²)] = A/x + (Bx+C)/(1+x²)
1 = A(1+x²) + (Bx+C)x
1 = Ax²+A+Bx²+Cx
1 = (A+B)x²+Cx+A
1 = A
A+B = 0 => B=-1
C = 0
1/[x(1+x²)] = 1/x - x/(1+x²)