计算定积分 ∫ x ln(1+e^x) dx (上限2下限-2)
1个回答

∫(-2→2)x*ln(1+e^x)dx

=∫(-2→0)x*ln(1+e^x)dx +∫(0→2)x*ln(1+e^x)dx

∫(-2→0)x*ln(1+e^x)dx

设y=-x,x=-y

原式=∫(2→0)(-y)*ln[1+e^(-y)]d(-y)

=∫(2→0)y*ln[1+e^(-y)]dy

=∫(2→0)y*ln[(e^y+1)/e^y]dy

=∫(2→0)y*ln(e^y+1)dy -∫(2→0)y*ln(e^y)dy

=-∫(0→2)y*ln(1+e^y)dy +∫(0→2)y^2dy

即∫(-2→0)x*ln(1+e^x)dx=-∫(0→2)x*ln(1+e^x)dx +∫(0→2)x^2dx

故∫(-2→2)x*ln(1+e^x)dx

=∫(-2→0)x*ln(1+e^x)dx +∫(0→2)x*ln(1+e^x)dx

=-∫(0→2)x*ln(1+e^x)dx +∫(0→2)x^2dx +∫(0→2)x*ln(1+e^x)dx

=∫(0→2)x^2dx

=[x^3/3]|(0→2)

=2^3/3

=8/3