已知抛物线y=-x2+2x+m-1与x轴有两个交点A、B.
1个回答

解题思路:(1)根据抛物线与x轴有两个交点,判别式△>0,列式求解即可;

(2)把点A的坐标代入进行计算求出m的值,再把m的值代入抛物线解析式整理即可得解,把解析式配方写成顶点式,写出点C的坐标即可;

(3)根据同底等高的三角形面积相等可得点P到x轴的距离等于点C到x轴的距离,再根据点P在x轴下方,把点P的纵坐标代入抛物线解析式求出点P的横坐标即可得解.

(1)∵抛物线与x轴有两个交点,

∴△>0,

即b2-4ac=22-4×(-1)×(m-1)=4+4m-4=4m>0,

解得m>0;

(2)∵A的坐标为(-1,0),

∴-(-1)2+2×(-1)+m-1=0,

解得m=4,

∴抛物线解析式为y=-x2+2x+4-1=-x2+2x+3,

即y=-x2+2x+3,

∵y=-x2+2x+3=-(x2-2x+1)+3+1=-(x-1)2+4,

∴顶点C的坐标为(1,4);

(3)存在点P(1-2

2,-4)或(1+2

2,-4).

理由如下:∵△PAB和△CAB都以AB为底边,

∴只要AB边上的高相等,则面积相等,

根据(2),点C的坐标为(1,4),

∴点C到AB的距离为4,

∴可以找到在x轴下方的点P,使S△PAB=S△CAB,此时点P的纵坐标为-4,

-x2+2x+3=-4,

整理得,x2-2x-7=0,

解得x=

−b±

b2−4ac

2a=

−(−2)±

(−2)2−4×1×(−7)

2×1=1±2

2,

∴存在点P(1-2

2,-4)或(1+2

点评:

本题考点: 二次函数综合题.

考点点评: 本题综合考查了二次函数,根的判别式的应用,待定系数法求二次函数解析式,同底等高的三角形的面积相等的性质,把点A的坐标代入抛物线解析式求出m的值是解题的关键.