取m=1,s1=a1=-1/2,1(3-5)=-2
于是sn/(-1/2)=n(3n-5)/(-2)
得sn=n(3n-5)/4
当n≥2时an=sn-s(n-1)=n(3n-5)/4-(n-1)(3n-8)/4=(3n-4)/2
a1=-1/2也满足表达式,于是an=(3n-4)/2
a(b1)=a2=1,a(b2)=a4=4=2²,于是a(bn)=4^(n-1)
a(bn)=(3bn-4)/2=4^(n-1),得bn=(2/3)[2+4^(n-1)]=(8+4^n)/6
于是f(n)=(3/2)/(2+4^n)
f(x)=(3/2)/(2+4^x),f(x)+f(1-x)=(3/2)/(2+4^x)+(3/2)/[2+4^(1-x)]
=3/4【这步自己画画吧】
于是Cn=(3/4)[(n+1)/2]=3(n+1)/8
1/cnc(n+1)=(8/3)[1/(n+1)(n+2)]=(8/3)[1/(n+1)-1/(n+2)]
于是Tn=(8/3)[1/2-1/3+1/3-1/4+……+1/(n+1)-1/(n+2)]
=(8/3)[1/2-1/(n+2)]
=4n/(3n+6)