3.(1)过A点作BC的垂线交BC于E
AB=AC,则BE=CE=1/2BC=2
AE^2=AB^2-BE^2
AE^2=5^2-2^2=25-4=21
AE=√21
tan角ABC=AE/BE=√21/2
(2)根据三角形面积相等,得S=BC*AE/2=AC*BD/2
BC*AE=AC*BD
4*√21=5*BD
BD=4√21/5
4.(1)AB=AC,AD:DC=1:2
设AB=3a,则AD=a,DC=2a
BD^2=AB^2+AD^2
BD^2=(3a)^2+a^2
BD=√10a
sin角ADB=AB/BD=3a/√10a=3√10/10
cos角ADB=AD/BD=a/√10a=√10/10
tan角ADB=AB/AD=3a/a=3
(2)过D点作BC垂线交BC于E
由AB=AC得出角C=45度
sin角C=DE/CD=√2/2
DE=√2a
BE^2=BD^2-DE^2
BE^2=10a^2-2a^2
BE=2√2a
sin角DBC=DE/BD=√2a/√10a=√5/5
cos角DBC=BE/BD=2√2a/√10a=2√5/5
tan角DBC=DE/BE=√2a/2√2a=1/2