解题思路:根据折叠的性质得到∠B′AF=∠BAF,要AB′∥BD,则要有∠B′AD=∠ADB=20°,从而得到∠B′AB=20°+90°=110°,即可求出∠BAF.
∵长方形纸片ABCD沿AF折叠,使B点落在B′处,
∴∠B′AF=∠BAF,
∵AB′∥BD,
∴∠B′AD=∠ADB=20°,
∴∠B′AB=20°+90°=110°,
∴∠BAF=110°÷2=55°.
∴∠BAF应为55度时才能使AB′∥BD.
点评:
本题考点: 翻折变换(折叠问题).
考点点评: 本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等.也考查了直线平行的判定.