解析,
【1】(1)AC∥BG,
所以,∠GBD=∠FCD
又,∠GDB=∠FDC
D又是BC的中点,BD=CD
所以,△GBD≌△FCD,
因此,BG=CF.
(2)△GBD≌△FCD,
所以,GD=DF,又,ED⊥GF,
所以,EF=EG,
在三角形BEG中,BE+BG>EG,
因此,BE+CF>EF.
【你的题目太多,我一题一题的打,别急】
【2】
(1)CE⊥AB,BD⊥AC,
所以,∠BEC=∠BDC=90º
∠BAD=∠CAE(公共角)
△BAD∽△CAE,
所以,∠ABP=∠ACE,
又,BP=AC,CQ=AB,
所以,△BAP≌△CQA
(2)那么,AQ=AP,∠AQC=∠PAB
又,AE⊥CQ,
所以,∠AQC+∠QAB=90°,
因此,∠PAB+∠QAB=90°,
那么,AQ⊥AP.
【3】(1)连接AF,
Rt△ABC≌Rt△ADE
所以,AC=AE,AD=AB,∠EAD=∠CAB,
∠ADF=∠ABF=90°,AF是公共边,
△ADF≌△ABF,
所以,∠DAF=∠BAF
又,∠EAD=∠CAB,∠DAB是公共角,
所以,∠CAD=∠FAB,
因此,∠CAF=∠EAF,
又,AC=AE,AF是公共边,
所以,△ACF≌△AEF,
所以,CF=EF.
全等的三角形:
△ACF≌△AEF
△ADF≌△ABF
△ACD≌△ABE
△CDF≌△EBF
△CDB≌△EBD
所以,∠CAD=∠EAB,