求数列2+a,5+a²,8+a³,.(3n-1)+a^n的前几项和
收藏:
0
点赞数:
0
评论数:
0
1个回答

let

S = 1.a^1+2.a^2+.+n.a^n (1)

aS = 1.a^2+2.a^3+.+n.a^(n+1) (2)

(2)-(1)

(a-1)S = n.a^(n+1) - ( a+a^2+...+a^n)

= n.a^(n+1) - a( a^n-1)/(a-1)

S = [1/(a-1)][n.a^(n+1) - a( a^n-1)/(a-1)]

bn= 3n-1

cn = a^n

dn=bn + cn

= (3n-1) .a^n

= 3( n.a^n) - a^n

Sn =d1+d2+...+dn

= 3S - a(a^n-1)/(a-1)

=[3/(a-1)][n.a^(n+1) - a( a^n-1)/(a-1)] - a(a^n-1)/(a-1)

数列2+a,5+a²,8+a³,.(3n-1)+a^n的前几项和

= Sn

=[3/(a-1)][n.a^(n+1) - a( a^n-1)/(a-1)] - a(a^n-1)/(a-1)

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识