1 -2/1 3/1 -4/1 5/1 -6/1 7/1 -8/1 9/1 -10/1 11/1 -12/1 13/1
1个回答

利用:1-1/2+1/3-1/4……+1/(2n-1)-1/2n=1/(n+1)+1/(n+2)+……1/2n

所以:

(1-1*2+1/3-1/4+1/5-.+1/1993-1/1994)/[1/(1+1995)+1/(2+1996)+.+1/(997+2991)]

=(1/998+.+1/1994)/[1/(1+1995)+1/(2+1996)+.+1/(997+2991)]

=(1/2)*(1/998+.+1/1994)/[1/998+1/999+.+1/1994]

=1/2

补充:

1

题目有点问题,最后应该是997+2991 否则和前面规律对不上了!

1 2 3..997

1995 1996.2991

2

还是有问题,中间为除,不为乘!

3

关于:

1-1/2+1/3-1/4……+1/(2n-1)-1/2n=1/(n+1)+1/(n+2)+……1/2n

可以用数学归纳法证明:

如下:

当n=1时,左侧=1-1/2=1/2,右侧=1/2,结论成立;

假设n=k成立,则1-1/2+1/3-1/4……+1/(2k-1)-1/2k=1/(k+1)+1/(k+2)+……1/2k

当n=k+1时,左侧=+1/(2k+1)-1/(2k +2)

右侧=1/(k+2)+……1/2k+1/(2k+1)+1/(2k +2)=+1/(2k+1)+1/(2k +2)-1/(k+1)=)=+1/(2k+1)-1/(2k +2)

根据假设,所以当n=k+1时,左侧=右侧,

所以1-1/2+1/3-1/4……+1/(2n-1)-1/2n=1/(n+1)+1/(n+2)+……1/2n