证明任何一个≥9之奇数,都可以表示成不超过三个的质数之和任何一个≥6之偶数,都可以表示成两个质数之和
4个回答

证明方法

哥德巴赫的问题可以推论出以下两个命题,只要证明以下两个命题,即证明了猜想:  (a) 任何一个>=6之偶数,都可以表示成两个奇质数之和.(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和.  这道著名的数学难题引起了世界上成千上万数学家的注意.200年过去了,没有人证明它.到了20世纪20年代,才有人开始向它靠近.1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比6大的偶数都可以表示为(9+9).这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”.