∧a=(ba)/(b+a)=(ab)/(a+b)=a∧b满足交换律
(a∧b)∧c=[(ab)/(a+b)]∧c=[(abc)/(a+b)]/[ab/(a+b)+c]
=abc/[ab+c(a+b)]=abc/(ab+ca+cb)
a∧(b∧c)=a∧[(bc)/(b+c)]=[(abc)/(b+c)]/[bc/(b+c)+a]
=abc/(bc+a(b+c))=abc/(bc+ab+ac)=abc/(ab+ca+cb)=(a∧b)∧c
满足结合律
a∧(b+c)=a(b+c)/(a+b+c)
(a∧b)+(a∧c)=ab/(a+b)+ac/(b+c)
令b=0,a=1 c=1
a∧(b+c)=a(b+c)/(a+b+c)=1/2
(a∧b)+(a∧c)=ab/(a+b)+ac/(b+c)=0+1=1
所以不满足分配率
定义运算aOb=aabb,用上述方法满足交换律和结合律