分解因式和因式分解的区别,最好有个例题
1个回答

在本质上来说没有什么区别.

就是倒着来理解,

因式分解应该是老师讲题时的名词

分解因式是给你题

让你按照老师讲的方法

来解决出来.(要有步骤详细方法)

因式分解很简单.

【提公因式法】

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式.

例如:-am+bm+cm=-(a-b-c)m

a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y).

注意:把2a+1/2变成2(a+1/4)不叫提公因式

【公式法】

两根式:ax^2+bx+c=a(x-(-b+√(b^2-4ac))/2a)(x-(-b-√(b^2-4ac))/2a)

立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);

立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)

完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.

公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

例如:a^2+4ab+4b^2 =(a+2b)^2

【分组分解法】

分组分解是解方程的一种简洁的方法,我们来学习这个知识.

能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法.

比如:

ax+ay+bx+by

=a(x+y)+b(x+y)

=(a+b)(x+y)

同样,这道题也可以这样做.

ax+ay+bx+by

=x(a+b)+y(a+b)

=(a+b)(x+y)

【十字相乘法】

这种方法有两种情况.

①x^2+(p+q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q) .

例:x2-2x-8

=(x-4)(x+2)

②kx^2+mx+n型的式子的因式分解

如果有k=ab,n=cd,且有ad+bc=m时,那么kx^2+mx+n=(ax+c)(bx+d).

图示如下:

a╲╱c

b╱╲d

例如:(7x+2)(x-3)中a=1 b=7 c=2 d=-3

因为

7.2

1.-3

-3×7=-21,1×2=2,且-21+2=-19,

所以=(7x+2)(x-3).

【配方法】

对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法.属于拆项、补项法的一种特殊情况.也要注意必须在与原多项式相等的原则下进行变形.

例如:x^2+3x-40

=x^2+3x+2.25-42.25

=(x+1.5)^2-(6.5)^2

=(x+8)(x-5).

【多项式因式分解的一般步骤】

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解

④分解因式,必须进行到每一个多项式因式都不能再分解为止.

也可以用一句话来概括:“先看有无公因式,再看能否套公式.十字相乘试一试,分组分解要合适.”

几道例题

1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.

原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项)

=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方)

=[(1+y)+x^2(1-y)]^2-(2x)^2

=[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]

=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).

2.求证:对于任何实数x,y,下式的值都不会为33:

x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5.

原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

=(x+3y)(x^4-5x^2y^2+4y^4)

=(x+3y)(x^2-4y^2)(x^2-y^2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y).

当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立.

3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形.

分析:此题实质上是对关系式的等号左边的多项式进行因式分解.

证明:∵-c^2+a^2+2ab-2bc=0,

∴(a+c)(a-c)+2b(a-c)=0.

∴(a-c)(a+2b+c)=0.

∵a、b、c是△ABC的三条边,

∴a+2b+c>0.

∴a-c=0,

即a=c,△ABC为等腰三角形.

4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式.

-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)

=-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).

如有帮助请给好评,先谢谢了