设函数f(x)=ex+1,g(x)=(e-1)x+2(e是自然对数的底数).
1个回答

解题思路:(1)求导函数,确定导函数的零点,从而可求H(x)的最小值,证明最小值小于0,可得H(x)有两个零点;(2)①由f(an)=g(an+1),可得an+1=1e−1(ean-1),用数学归纳法证明an∈(0,1);②作差(e-1)an+1-an=ean-1-an,考虑函数p(x)=ex-1-x(0<x<1),证明p(x)在(0,1)上是增函数,即可得到结论.

(1)函数f(x)=ex+1,g(x)=(e-1)x+2,∴H(x)=f(x)-g(x)=ex-(e-1)x-1

∴H′(x)=ex-(e-1),

令H′(x)=0,则x0=ln(e-1)

当x∈(-∞,x0)时,H′(x)<0,H(x)在(-∞,x0)单调递减

当x∈(x0,+∞)时,H′(x)>0,H(x)在(x0,+∞)单调递增

故H(x)min=H(x0)=ex0-(e-1)x0-1=e-1-(e-1)ln(e-1)-1

令t=e-1>1,函数h(t)=t-tlnt-1,

因为h′(t)=-lnt<0,所以函数h(t)=t-tlnt-1在(1,+∞)单调递减,故h(t)≤h(1)=0,

又e-1>1,故H(x0)<0,从而H(x)有两个零点;

(2)①证明:因为f(an)=g(an+1),即ean+1=(e-1)an+1+2,所以an+1=[1/e−1](ean-1)

下面用数学归纳法证明an∈(0,1)

1°当n=1时,a1∈(0,1)成立;

2°假设当n=k时,ak∈(0,1),则ak+1=[1/e−1](eak-1)

∵ak∈(0,1),∴1<eak<e,∴0<eak-1<e-1

∴0<ak+1<1

综上知,an∈(0,1);

②∵(e-1)an+1-an=ean-1-an

考虑函数p(x)=ex-1-x(0<x<1)

∵p′(x)=ex-1>0,

∴p(x)在(0,1)上是增函数

故p(x)>p(0)=0

∴(e-1)an+1-an>0

∴(e-1)an+1>an

点评:

本题考点: 数学归纳法;函数的零点.

考点点评: 本题考查函数的零点,考查函数的单调性,考查数学归纳法的运用,考查大小比较,考查学生分析解决问题的能力,属于中档题.